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Abstract: Greenhouse climate and crop models are essential for improving environmental 
management and control efficiencies. In this paper, are described several types of models that could be 
used to simulate and predict the greenhouse environment, as well as the tuning methods to compute 
their parameters. This study focuses on the dynamical behaviours of the inside air temperature, 
humidity and carbon dioxide concentration models and their domains of application. Linear and non-
linear models will be covered, focusing on issues such as: physical models, black-box models, and 
neural networks models. Several experiments will be presented to illustrate the performance of each 
model in the simulation and prediction of the greenhouse climate. The models are described as 
functions of the outside climate, the control actions performed and the transpiration and 
photosynthesis responses of the plants. The data used to compute the simulation models were acquired 
in an experimental greenhouse using a sampling time interval of 1 minute. The greenhouse is 
automated with several actuators and sensors that are connected to an acquisition and control system 
based on a personal computer. 
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1. Introduction 

To improve the management and control of a greenhouse climate, an adaptive climate 
control strategy must be used to compute the optimal control signals used for a defined cost 
performance function. The adaptive PID – Proportional Integral Derivative controller 
structure showed in figure 1 could be used for this purpose. The adaptive controller needs the 
use of greenhouse climate models to predict future outputs based on past and current inputs, 
the expected control actions and the predicted weather inputs. An optimiser module computes 
the proportional, integral and derivative gains, in order to minimize or maximize the specified 
cost function according to the constraints imposed. Afterwards, these parameters are sent to 
the PID closed controlled loop. 
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Figure 1. Structure of the climate adaptive PID controller 

Normally, the optimisation is performed to maximise a cost function which has a 
positive term related with the expected crop economic value and a negative term related with 
the operation costs of the climate conditioning equipment. Also, constraints for the physical 
and physiological values of the actuators, the environment and the crop are applied. This 
paper describes possible implementations for the models used by the controller. 

2. Greenhouse climate models 

Simulation models to describe the dynamic behaviour of the air temperature and 
humidity and dioxide concentration inside the greenhouses have been published in several 
studies. These models could be based on energy and mass flows equations (Boulard et al., 
1993, Bot, 1991), or derived by using a system identification approach using linear and non-
linear techniques, such as the recursive least squares algorithms and neural networks to tune 
the parametric models (Boaventura Cunha et al., 2000; J. P. Coelho et. al, 2002). 

 
2.1. Physical based Models 

Physical models describe the flow and mass transfers generated by the differences in 
energy and mass content between the inside and outside air, or by the control or exogenous 
energy and mass inputs, as showed in equations 1 and 2 (Bakker et.al., 1994).  
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where Tag is the air temperature, Caph the thermal capacity, qin,h and qout,h the energy 
inflow and outflow, ph the energy production per unit of time, cm the mass concentration, qin,m 
and qout,m  the mass inflow and outflow and pm the mass produced per unit of time referred to 
the greenhouse volume V(m3). 

In the previous equations, the transport mechanisms for conduction, convection and 
radiation are implicit. For instance, the heat flux from inside to outside due to ventilation, 
which is a term of qout,h  in equation1, is described by the following equation:  

 , ( )vent h v p i oq q c T Tρ= −  (3) 
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where qv is the volumetric flux trough the windows, ρcp the volumetric specific heat, 
Ti the inside temperature and To the outside temperature. 

The drawback of this methodology is that the development of these models are 
difficult to tune in practice, since they use a large number of parameters and physical 
variables. Moreover, when properly tuned, they can only provide good predictions over short 
future time horizons, since the greenhouse-crop system is time variant. 

 
2.2. Black-box Linear Parametric Models 

This method is based on experimentation where the input u and output y signals from 
the system to be identified, figure 2, are recorded and subjected to data analysis in order to 
infer a model. This procedure is known as system identification (Ljung, 1987). In this case, 
the output signal vector y is formed by the measurements of the inside air temperature and 
humidity, Ti and RHi. These models must be related to the external influences of the outside 
weather conditions, as well to the control signals performed on the greenhouse actuator 
equipment. 
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Figure 2. System and model representation 

In this figure, e, y’ and ε denote a noise signal, the model output and the prediction 
error. The model inputs u are formed by the measurements of the outside temperature To, 
Solar irradiation Rad, ventilator and heater control signals uvent and uheater, among other 
relevant measurements.  

The system identification procedure could be developed assuming that the greenhouse 
climate can be described as a linear system around a particular operating point. In this way, 
linear parametric ARX models can be employed to describe the dynamics of the greenhouse 
climate system (Boaventura Cunha et al., 1997; 2000, Ljung, 1987). Previous work has shown 
that the second-order ARX model equations 4 and 5 describe the dynamics of the air 
temperature and relative humidity well.  
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where: ai denotes the denominator parameters of the transfer functions, Bi the 
polynomials in the delay operator, To the outside air temperature, Rad the outside solar 
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radiation, Ti and Rhi the measured inside air temperature and humidity, Tpipe the temperature 
of the heating pipes and uvent, uheat the ventilation and heating inputs. 

However, the simulations computed with this second approach, for sets of data that 
were not used to compute the models parameters, are more sensitive to mismatches compared 
to the physical models. This is due to the fact that the ARX black-box models are a great 
simplification of the entire system. Therefore, the parameters are time-varying. As an 
example, the process of solar irradiation conversion to heat varies throughout the day and the 
year, since the Sun elevation and the optical properties of the cover varies in time.  

To overcome this difficulty, recursive estimation algorithms must be implemented to 
compute the time-varying parameters of the transfer functions of equations 4 and 5, (Aström 
et al., 1989). Since the parameters are slow time-variant and the signals have no excitation for 
long periods of time, an estimator that forgets the information only in the directions in which 
new information is gathered must be used. The following recursive least squares algorithm 
with exponential forgetting, equations 6.1 to 6.3 can be employed with this objective, 
(Boaventura Cunha et al., 2000; Salgado et al., 1988), 
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where θ denotes the estimated model parameters (coefficients of polynomials A and B) 
and K and P  are the gain and covariance matrixes. For this estimator, the estimations 
converge to values such that P(k)=αI, where typically 0.0001<α<0.001, and ϕ(k) and υ(k) are 
the regression vector and the estimate of the variance of the residuals. 

 
 

2.3. Black-box Non-linear Parametric Models 

Artificial neural networks are collections of mathematical models that reproduce some 
of the observed properties of biological nervous systems. The key element of the ANN is the 
structure of the information processing system. This system is composed of a large number of 
highly interconnected processing elements that are analogous to neurons and are coupled 
together with weighted connections that are analogous to synapses.  

Non-linear autoregressive models are potentially more powerful than linear ones 
because they can model more complex underlying characteristics of the data. There are a 
broad number of ANNs topologies. Among the most widespread are feedforward networks. In 
this paper, a multilayer perceptrons (MLP) network with a hyperbolic tangent (tanh) 
activation function is used. These types of structure have proved to be universal aproximators 

(Hornik et al., 1989). This means that they can approximate any reasonable function f  with a 
subjective accuracy given by: 
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where τ is the tanh function, k is the number of hidden units, jlv
and ijw

are weights, 

iθ  are biases and u  the data vector.  
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In this work, the non- linear function f  is estimated based on data samples using the 
Lavenberg-Marquardt optimisation technique. The Lavenberg-Marquardt is the standard 
method for minimization of mean square error criteria, due to its rapid convergence properties 
and robustness (Marquardt, 1963). Neural networks have several major drawbacks. They 
require large numbers of data samples due to their large number of degrees of freedom. 
Problems such as over- fitting and sub-optimal minima may occur more severely than in the 
linear case. Also, this method requires a large computation time for training, i.e. for learning 
the system behaviour, which restricts its application to real-time implementations. 

3. Results and conclusions  

The inside air temperature and humidity simulation models were identified using the 
described approaches for a greenhouse located in the north of Portugal. The greenhouse has a 
floor area of 210m2, covered with 200µm polyethylene film. Several actuators and sensors are 
installed and connected to an acquisition and control system based on a Personal computer 
and a data acquisition and control card (PCL-818, from Advantech) using a sampling interval 
of 1 minute. 

In figure 3, the simulation results achieved with the physical model for the air 
temperature and relative humidity are shown. The model parameters were computed off- line 
using the data of the month of January 2000, and the simulations were performed for a 
validation data set of the first 6 days of March of the same year. 

Table 1 shows the performance results of the physical and parametric models for the 
pure simulation and the 60 step ahead predictions, which corresponds to predictions in the 
future time horizon of 60 minutes.  

In this case, the data sets used to compute the models parameters and the simulations 
were the same of the previous case and the parametric models were estimated off- line using a 
least squares algorithm and a neural network. The criteria performance used is the root mean 

squared errors, 
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, with N being the size of the data samples and Ek the 

error between simulated and measured values. 
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Figure 3. Measured and simulated temperatures (top) and relative humidity (bottom) 

Table1 – Performance of the air temperature and relative humidity models for the data 
set validation 

Air temperature Air relative humidity  
Model RMSE 

(simulation) 
RMSE 
(60 min 

prediction) 

RMSE 
(simulation) 

RMSE 
(60 min 

prediction) 
Physical 1.4063 0.1928 4.9401 0.6914 
ARX  2.0022 0.2231 5.2810 0.9933 
Neural 

Network 
1.8309 0.2198 5.1772 0.9614 
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This study has drawn several comparisons between physical, linear and non- linear 
modelling techniques applied to simulate the inside greenhouse climate. It was observed from 
various simulations that non recursive physical models give better results than other off- line 
methods, when are used validation data sets periods distant in time from the data sets used to 
compute the models. However, computation times for ARX models are much lower, and if 
recursive estimation techniques are applied, the results achieved for the short time prediction 
horizon, from 1 to 60 minutes, are better with these models. The use of neural networks 
models has the major drawback of requiring a large computation time for training, which 
restricts their application to real-time implementations. 
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